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Hexagonal symmetry for smectic blue phases
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Smectic blue phases are liquid crystalline phases which exhibit both three-dimensional-orientational order
and smectic positional order. X-ray scattering experiments reveal that at least one of these phases is not cubic,
as classical blue phases, but offers a hexagonal symmetry. A comparison of the experimental patterns with the
scattering patterns given by smectic double twist tubes sketched by Kamien is proposed.

PACS number~s!: 61.30.Eb, 61.10.2i
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I. INTRODUCTION

Liquid crystals offer a wide variety of phases with lon
range orientational order, but some phases like the sme
phases also exhibit additional quasi-long-range translatio
order. When the molecular mesogens are chiral, a spont
ous twist of the molecular orientation is observed. For
stance, the classical nematic phase, which exhibits on
short range translational order, gives birth to the cholest
phase@1# characterized by a one dimensional periodic orie
tational order with period or pitch much larger than the m
lecular sizes. At ‘‘higher’’ chirality, other phases called blu
phases@2# appear in a temperature range located between
cholesteric phase and the isotropic one. Two of these b
phases, BP1 and BP2, exhibit a long range 3-dimensio
orientational order, but classically only short range positio
order. They show a cubic crystalline structure with select
Bragg reflections in the range or close to visible light. T
monodomains are facetted and these phases appear
platelet textures under optical microscope. At ‘‘low chira
ity,’’ the BP1 and BP2 structures can be interpreted in ter
of a 3D periodic director field. Twist extends not only in on
direction like in the cholesteric phase but in both directio
perpendicularly to the director. One can thus build ‘‘doub
twist’’ cylinders whose size is determined by the tilt ang
(u) of the director at the surface with respect to the cylind
axis. The ‘‘double twist’’ cylinder radius is thus of the orde
of magnitude of the cholesteric pitch. The cubic structu
~Fig. 1! can then be described by cubic networks of doub
twist cylinders ~with a surface tilt angleu equal to 45°)
separated by defect lines~disclination lines!. In the ‘‘high’’
chirality limit, this description is no longer valid and a bia
ial order parameter has to be introduced@3#.

At lower temperatures smectic order may occur, but t
translational order is not always compatible with the tw
generated by the molecular chirality. For instance, the sm
tic layers in the SmA phase cannot be continuously twiste
Renn and Lubensky@4# predicted the existence of ne
phases called twist grain boundary phases, or TGB pha
which have been experimentally discovered in chiral therm
PRE 621063-651X/2000/62~1!/658~8!/$15.00
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tropic liquid crystals by Goodbyet al. in 1989 @5#. Several
TGB phases as TGBA and TGBC have already been identi
fied @6–8#. These phases are usually observed upon coo
the isotropic phase~Iso! and an example of typical phas
diagram is

SmC* -TGBC-TGBA-Chol-BP-Iso.

A twist-grain boundary phase is characterized by both sm
tic ordering and twist. In the SmC* phase, the layer norma
is tilted compared to the director and parallel to the twist a
whereas, at least in the TGBA phase, the twist axis is perpen
dicular to the layer normal. A continuous twist of the direct
in this direction is not compatible with smectic orderin
Renn and Lubensky have proposed a model where twist
curs between blocks or grains, of sizel b along the twist
direction. Each block exhibits perfect smectic ordering~Fig.
2!. The size of the blocks is intermediate between the sm
tic period~typically few nanometers! and the pitch~few hun-
dred nanometers!. Parallel screw dislocations lie in the wal
between the grains.

Recently@9,10# a new sequence was discovered in a ch
material ~called FH/FH/HH-18BTMHC! with the phase se-
quence

SmC* -TGB phases-BP-Iso.

FIG. 1. Geometrical model of classical blue phases with
orientational order, but no long range positional order. Such mo
involve double twist tubes arrays and networks of disclination lin
658 ©2000 The American Physical Society
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PRE 62 659HEXAGONAL SYMMETRY FOR SMECTIC BLUE PHASES
Three blue phases have been observed in this compo
BP3 between 74.7 °C and 73.7 °C, BP2 between 73.7 °C
73.3 °C, BP1 between 73.3 °C and 73.1 °C~upon cooling!
@11#. The phase diagram has been established using ca
metric studies and optical microscopy. The pitch~about
0.2 mm) has been measured in the TGBA phase using the
Grandjean-Cano method. The textures of these blue ph
are similar to those of classical blue phases and thus
have been labeled in the same way. However, in this ph
diagram, there is no cholesteric phase between the
phases and the TGB phases. X-ray scattering studies on
compound were reported in previous papers@12,13#. Such
studies give informations on the order at the molecular le
By analyzing the width of the diffusion ring scattered by
powdered sample, we have shown that the smectic orde
ready appears in the blue phases, but with a correla
length ~typically 30 nm! smaller than in the TGB phas
~typically 200 nm!. One can notice that smectic order h
been already detected in a metastable blue phase@14,15# in
compounds exhibiting a direct blue phase to smectic tra
tion. This phase has been called BPS .

Using a well controlled oven, we succeeded in growi
monodomains of smectic blue phases@13#. The scattering
patterns performed on this monodomains exhibited f
peaks indicating that the smectic order is not isotropic as
could expect for blue phases with short range smectic or
but more extended in some directions of the orientatio
cell. The correlation length associated with the peaks
been estimated to typically 70 nm. The experimental se
used at that time did not allow any rotation of the samp
thus preventing from any exploration of the whole recipro
space. In order to perform this exploration, we have built
oven in which the capillary can rotate around its axis~the
vertical axis!. With this setup, we have grown up large mo
odomains of smectic blue phases and detected four pair
smectic peaks exhibiting a hexagonal symmetry as deta
in the following section~II !. This important result indicate
that at least one of the smectic blue phase is not cubic
confirmed by the observation of birefringence under opti
microscope. Section III presents some computation of
scattering pattern of the smectic double twist tubes sketc

FIG. 3. Schematic representation of the scattering condition

FIG. 2. Schematic representation of a twist grain bound
phase: smectic blocks are piled along the twist axis X. They
separated by twist boundaries made by walls of parallel screw
locations.
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by Kamien@19#. The comparison with the experimental pa
terns shows that this model must be revisited, at least
layers period distribution, to be fully compatible with ou
data.

II. EXPERIMENTAL EVIDENCE OF A HEXAGONAL
SYMMETRY

In the setup we used in these experiments, the compo
is contained in a glass capillary placed inside the hot st
whose description will be detailed in a forthcoming pap
The main features of this hot stage are its transparency

FIG. 4. Experimental scattering pattern obtained with tempe
ture gradient close to 0.1 °C/mm atu5250°. The P0 and P1 peak
are present.

FIG. 5. Experimental scattering pattern obtained with tempe
ture gradient close to 0.1 °C/mm atu520°. Only the P2 peak is
observed.
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660 PRE 62B. PANSU, E. GRELET, M. H. LI, AND H. T. NGUYEN
ray with use of kapton and beryllium windows, a good s
bility in temperature~up to 0.01 °C! and the possibility of
rotating the capillary around its main axis. Moreover, a slig
vertical temperature gradient along the capillary can be
plied in order to control the nucleation of the crystalline bl
phases when cooling down@16#. We observe large mon
odomain growing for small cooling rate~typically 0.01 °C
per 5 min). X-ray scattering experiments have been don
LURE ~Orsay, France! using synchrotron radiation~beam
size: 0.530.5 mm2). After the monodomain has been grow
up by a slow cooling down of the sample from the isotrop
phase, different scattering patterns are recorded on ima
plates as long as the capillary is rotated by steps of 5°. Le
call u this rotation angle~Fig. 3!. For each value ofu we
obtain a diffusion ring characteristic of the smectic ord
This ring is not homogeneous and more intense in so
directions as already observed~Figs. 4 and 5!. The intensity
I (u,m) along the ring has been analyzed as a function of
angle with the vertical axis (m). Then, by combining the
various profiles, we can determine the position and the
tension of the smectic peaks.

We have performed several series of experiments w
two capillaries containing a small amount of FH/FH/HH
18BTMHC for two different temperature gradients~a: about
0.1 °C mm21; b: about 0.03 °C mm21). For low tempera-
ture decreasing rates, we have observed in the two cas~a
and b! four pairs of peaks. In the following, each pair will b
characterized by the position (u,m) of one of the peak, the
angular coordinates of the second one being then (u,m
6180°) . Among the four pairs of peaks, one pair is mo
intense and will be referred to as P0, the three other ones
be noted P1, P2, P3. The position of the peaks are show
Tables I and II. From these values, we can deduce the an
between the directions along which the peaks are loca
When two peaks are defined by the angles (u1 ,m1) and
(u2 ,m2), the anglea between the two associated directio
is

cosa5sinm1sinm2cos~u12u2!1cosm1cosm2 .
~2.1!

TABLE I. Positions of the four peaks P0, P1, P2, P3 with te
perature gradient 0.1 °C/mm~case a!. m is the angle with the ver-
tical axis or with the temperature gradient.u is the rotation angle
around this axis. The monodomain has been grown withu50 along
the x-ray beam. The angles are given in degrees.

P0 P1 P2 P3

u 249.5 259 21 51.8
m 59.4 233 117 2112.4

TABLE II. Positions of the four peaks P0, P1, P2, P3 w
temperature gradient 0.03 °C/mm~case b!. The angles are given in
degrees.

P0 P1 P2 P3

u 224.4 259.8 19.3 67.4
m 247 45.3 2128.1 94.9
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Tables III and IV clearly show that the three directio
along which P1, P2 and P3 are located are perpendicula
the direction along which the more intense peaks are loca
~P0!. Moreover these directions are separated by angles c
to 120°. This proves that there is a threefold axis in t
structure and only one and that quasi-long-range smectic
der is observed along this axis~P0! but also along three axe
perpendicular to it~P1, P2, P3!. At this point, it is important
to notice that the Bragg scattering is not due to the period
ity of the orientational order and this for two reasons: the c
is too large to be detected with x-ray scattering~hundreds of
nanometers! and it does not offer a density modulation b
mainly an orientational order. X-ray scattering being sen
tive to a density modulation, we detect the Fourier transfo
of some pattern in the cell linked to a periodicity of about
nm, that is the smectic order. Nevertheless, since the s
metry exhibited by these patterns is certainly correlated w
the orientational order, these experimental results give in
mation on the tridimensional cell. Therefore one can ded
that the smectic blue phase we have studied isnot cubicas
classical blue phase,but hexagonal. One can also notice tha
we do not observe any peak along the temperature grad
The main peak P0 is quite always tilted at about 60° from
vertical axis, that is from the temperature gradient. Thus
orientation of the monodomains in the temperature grad
cannot be interpreted by symmetry arguments since no s
metry axis of the structure is aligned with the symmetry a
of the setup.

Phase diagram determined by calorimetric measurem
show two blue phases, BPSm1 and BPSm2 in a temperature
range of about 0.7 °C. Since BPSm2 first appears when cool
ing down, we assume that the structure with a threefold sy
metry we have determined is that of BPSm2. In the BPSm1
temperature range~less than 0.2oC!, we no longer observe
clear peaks, probably because it is hard to nucleate ano
crystalline phase when large monodomains of BPSm2 have
been grown@2,20#. In classical blue phases, BP2 and BP1 a
cubic and it has been shown, for instance under electric fi
that BP1 nucleates with a twofold axis parallel to a fourfo
axis of BP2@17#. Without external field, several orientation

- TABLE III. Angles between the directions along which th
peaks are observed~case a!. The angles are given in degrees.

P0 P1 P2 P3

P0 0 92 89 92
P1 92 0 118 120
P3 89 118 0 122
P4 92 120 122 0

TABLE IV. Angles between the directions along which th
peaks are observed~case b!. The angles are given in degrees.

P0 P1 P2 P3

P0 0 93 90 92
P1 93 0 123 119
P3 90 123 0 118
P4 92 119 118 0
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PRE 62 661HEXAGONAL SYMMETRY FOR SMECTIC BLUE PHASES
of BP1 can be obtained from one BP2 monodomain. Un
microscope, at the transition from classical BP2 to class
BP1 upon cooling, cross hatching appears in the BP2 m
odomains indicating that each of these monodomains ca
generate a unique orientation of BP1@20#. Single BP1 mon-
odomains have been obtained by direct nucleation from
BP3 phase and never when the BP2 phase is present in
phase diagram. This seems to be the case also for sm
blue phases. To determine the structure of BPSm1, two ways
are at present considered: either decreasing chirality by m
ing eneantiomer mixtures, since BPSm2 could disappear a
lower chirality like classical BP2, or applying an electr
field.

This evidence of a hexagonal symmetry proves that sm
tic blue phases are really new phases and not only clas
blue phases with smectic fluctuations and that the sme
order deeply disturbs the orientational order. A three dim
sional hexagonal structure has already been observed in
sical blue phases but only under electric field@17#. A geo-
metrical vision of a hexagonal blue phase in terms of dou
twist cylinders is given in Fig. 6. This structure is compos
of a first set of parallel cylinders located on a hexago
network. Three other sets of cylinders are perpendicula
the first one and pile up along a helicoidal axis (31 or 62).
The experimental results obtained on BPSm2 can be easily
interpreted from this simple geometrical model by assum
that the regions where the smectic order can extend easily
the double twist cylinders cores. The P0 peaks correspon
the first set of cylinders, the P1, P2, P3 peaks correspon
the three other sets of cylinders. Such a geometrical mo
does not help to understand why the orientational order s
metry changes. Indeed the prediction of the phase diagra
classical blue phase requires sophisticated Landau th
@3,18#. Then the influence of the smectic order cannot
simply understood with use of geometrical model and
thermodynamic understanding of hexagonal smectic b
phases remains a challenge for theoreticians.

III. SMECTIC DOUBLE TWIST TUBES MODEL

A first approach for combining smectic order with thr
dimentional orientational order, as sketched in Fig. 7
been proposed by Kamien@19#. As first pointed out in@13#,
the smectic order can extend easily in the core of the dou
twist tubes. Then, like in TGB structures, the rotation of t

FIG. 6. Geometrical model of a 3D hexagonal blue phase ba
on an array of double twist tubes.
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director is no longer continuous but involves annular grai
In order to respect the cylindrical symmetry, these gra
cannot be filled up with perfect smectic layers. In the mo
proposed by Kamien, the layers build half-helicoids~gener-
ated by a half line and not a full straight line! wrapping
around the main axis of the tube, except for the central c
filled with a perfect smectic structure. The first annular gra
corresponds ton1 half-helicoids. The second one, as movin
away from the core, corresponds ton2 half-helicoids (n2
greater thann1) and so on. The boundary between two a
jacent grain can be described by a wall of wrapping dislo
tion lines. Between the first annular grain and the core, th
aren1 dislocation lines. Between the first annular grain a
the second one, there are (n22n1) dislocation lines and so
on. The smectic double twist tube of lengthL, as described
by Kamien, is built by different annular grains. The core
radiusR1 is pure smectic with periodd. Its contribution in
the scattered intensity is a peak located atq5(0,0,2p/d)
which extends over a distance 1/L in thez direction and 1/R1
in the radial directions. Then one encounters different an
lar grains with increasing values of the numbern of helicoids
increasing more rapidly that the radii limiting the grains. T
main characteristic of each annular grain is the numbern of
half helicoids which build it, the perioda of each helicoid,
the minimum radiusR1 and the maximum radiusR2. At a
distancer from the main axis, the distanced(r ) between
smectic layers along the layer normal and the tilt angleu(r )
of the director and the layer normal with respect to the tu
axis are given by

d~r !5
a

n
cosu~r !, ~3.1!

tanu~r !5
a

2pr
. ~3.2!

From these equations, one can see that the tilt angle
creases with increasingr although there is no twist inside
each grain~Appendix A!. The distance between the smec
layers increases with increasingr, which implies some con-

ed

FIG. 7. Schematic representation of a smectic double twist t
~courtesy of Kamien!.
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662 PRE 62B. PANSU, E. GRELET, M. H. LI, AND H. T. NGUYEN
tribution to the elastic energy. The boundary condition b
tween two grains, noted 1 and 2 are at the boundaryr
5R):

d1~R!5d2~R!, ~3.3!

u2~R!5u1~R!1Du. ~3.4!

The number of dislocations at the boundary between the
grains is just given byN5n22n1. The whole determination
of the smectic double twist tube configuration, that is all t
characteristics of the grains, implies a generalization of
approach of Renn and Lubensky for the TGB phase. In th
model, a simple argument can give the grain size~Fig. 2!. If
the screw dislocations within each grain boundary are se
rated by a distancel d , then the rotation angle of adjace
blocks is given byDu5d/ l d whered is the smectic period
~for small angles!. The size of the blocksl b is also linked to
Du, the rotation angle between two adjacent grains, thro
the relation: Du/2p5 l b /p where p is the twist period.
Therefore the two lengthsl b , the size of the blocks, andl d ,
the distance between the screw dislocations, are relatedd
andp via l dl b5dp/2p. A reasonable estimation of the siz
of the blocks can be obtained by takingl b5 l d5Adp/2p.
Thus the size of the blocks in the TGB phase is intermed
between the smectic period~typically few nanometers! and
the pitch ~few hundred nanometers!. The extension of the
TGB model to the smectic double twist tube configurati
has not yet been done and the cylindrical symmetry does
allow a simple estimation of the size of the grains. Then
have chosen arbitrarily one configuration to sketch the m
features of the Fourier transform of a smectic double tw
tube. The smectic double twist configuration we have cho
is composed of five grains~Appendix B!. The main charac-
teristics of its architecture are as follows: the width of t
grains is nearly the same, the twist angle at each bounda
close to 10°, as the one measured on TGBA phase, the inten-
sity scattered by each grain is roughly the same for all
grains. In this configuration, the distances between the sc
dislocations inside the boundaries are comparable with
width of the grains. In the classical model of blue phases,
radius of the double twist tube is imposed by the kiss
conditions between perpendicular tubes and the tilt angl
the surface of the tubes is 45°. In the model sketched
Kamien, this kissing condition imposes some vanishing
the smectic order in between the tubes and therefore the
angle of the director at the surface of the smectic dou
twist tube cannot be determined only by geometrical estim
tions, energetical considerations are also required.

The scattering pattern of such a configuration is sketc
on Fig. 8. It has been computed as sketched in Appendi
The circle drawn on this figure is related to the period of
smectic core. The intensity scattered by each annular gra
located on a ring whose intersection with the (qx ,qy) plane
consists on two segments as drawn in Fig. 8. Therefore
whole scattering pattern looks like a discontinuous arc.
extension roughly corresponds to the director orientation
the external surface of the double twist tube. Figure 8
been drawn using the approximation of infinite double tw
tubes. In that case, the intensity is located at a precise v
of qz5qo . For the variation of the intensity uponqx , one
-
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can introduce the Bessel function of ordern in the Fourier
transform of a set ofn helicoids in the computation of the
factor structure of the tubes. The scattered intensity thus
hibits some maximum in theqx direction depending on the
number of helicoids inside the grain and on the limiting ra
of the grain . In our case, the smectic order is not long ra
order. Numerical computations have shown that the ma
mum of intensity is shifted towards largerqx for qz larger
than qo and lowerqx for qz lower thanqo . Therefore the
segments are deformed but they mean position remains
same. The following conclusions thus remain valid even
finite range smectic order. In Fig. 8, one can see that the
on which is located the scattered intensity is close to
circle which corresponds to a powder of perfect smectic
mains, but it is also obvious that it deviates from it for th
last grains. This is due to the regular increase of the sme
period that is intrinsically present in the model. Indeed t
smectic period increases withr, the distance to the main axis
inside a grain and this period is continuous at the bound
between two adjacent grains. The increase of the sme
period in the direct space thus appears as a shift of the m
mum intensity towards lower values ofq in the reciprocal
space.

The experimental patternsI (Q,m,u) whereQ is the scat-
tering vector modulus,m the angle with the vertical axis an
u the rotation angle around the vertical axis, exhibit for giv
u intense arcs but without any discontinuity. This can
easily explained by the fact that the scattering volume~about
0.25 mm3) contains more than 1010 hexagonal cells if one
assumes that the monodomain fills the capillary. Then th
are certainly statistical and thermal fluctuations of both
orientation and the configuration of the smectic double tw
tubes. The continuous arc that is experimentally obser
can be seen as some average of discontinuous arcs over
disorientation. To get more information from the experime
tal patterns, and particularly on the variation of the smec
period, we have performed a detailed analysis of the p
profiles. For each peak, we have taken the scattering pa
performed for the angleu as close as possible as those in
cated in Table I. Then we have measured the extension o
experimental intense arc for the different peaks. The FWH
~full width at height medium! of the intensity along the arc
~integrated over its width! is typically aroundDm540° for

FIG. 8. Schematic representation of the Fourier transform o
smectic double twist tube. The circle is related to a constant sme
period.
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PRE 62 663HEXAGONAL SYMMETRY FOR SMECTIC BLUE PHASES
the P0 peak and aroundDm530° for the P1, P2, P3 peaks
The P0 peak is the more intense and more extended tha
three other ones. We have also explored the radial width
the P0 peak (u550°). For each value ofm around the main
value m559.4°, we have determined the position of t
maxima of the scattered intensityQm(m) and the value of the
FWHM. The results are shown in Figs. 9 and 10. It is cle
that the location of the maxima moves towards larger val
of Q and not towards smaller ones as expected, in the m
proposed by Kamien, when moving away fromm(P0)
559.4°. They are located in between a perfect circle of
dius Qo , the value ofQ at the absolute maximum, and
straight line ~full line in 9!. The radial width of the peak
(DQ) increases when moving away from the central posit
(m559.4°). It seems non-symmetrical but this effect cou
be due to the beam shape: the horizontal focus of the b
and the vertical one are not identical.

Nevertheless, even taking into account some fluctation
the model of smectic double twist tube, one should obse
the shift of the location of the maximum intensity along t
radial direction of the reciprocal space towards lower val
of Q and not larger ones. This is not what we observe
perimentally. The real smectic double twist tube configu
tion could be different from the considered one. Nevert
less, the increase of the smectic period should be reveale
the scattering pattern. This means that the behavior of
distance between the layers could be not correctly descr
in the model of Kamien. We have also verified that the e
perimental patterns cannot be explained by a simple mo
involving only smectic cores without any helicoid with finit

FIG. 9. Analysis of the profile of the P0 peak~Table I!. The
dots indicate the locationQm of the maximum intensity along the
radial direction.Qo is the value ofQm at the absolute maximum
Qm /Qo51 corresponds to a constant smectic period~circle of Fig.
8!.

FIG. 10. Analysis of the profile of the P0 peak~Table I!. The
dots indicate the width of the peak~full width at height medium!
along the radial direction as a function of the anglem ~in degrees!.
It slightly increases when moving away from the absolute ma
mum.
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extension and fluctuating orientation. Therefore to expl
our experimental observations, two ways can be investiga
The first one consists in revisiting the boundary condition
the smectic period in the model of Kamien. Intoducing so
edge component in the dislocations would allow for a jum
in the smectic period when going from one grain to the oth
That means that the dislocations could not be pure sc
ones but could also have an edge component. Therefore
mean smectic period could be the same inside all the gr
as the smectic period in the core. One can then wonder
the scattering pattern would be modified. The second wa
investigation would be considering some tilt of the mo
ecules inside the layers that is some SmC feature occur

IV. CONCLUDING REMARKS

These experiments clearly show that smectic blue pha
are really original phases since at least one of them is
cubic as classical blue phases, but exhibits a hexagonal s
metry. This symmetry has been detected on the smectic o
and not yet on the orientational cell. The determination of
symmetry of the other smectic blue phase is in progress.
do not yet understand why the smectic order so much
turbs the tridimensional order changing the cubic symme
into a hexagonal one. A full understanding of the phase d
gramm probably requires both sophisticated Landau the
as for classical blue phases and physics of defects as
TGB phases. This remains a great challenge for theor
cians.
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APPENDIX A: NO TWIST FOR THE NORMAL TO AN
HELICOID

Although an helicoid is a chiral architecture, the normal
its surface does not twist. From a more general point of vie
a normal to any surface cannot twist. Indeed let us consid
family of surfaces determined by the following equation:

f ~x,y,z!5C. ~A1!

The normaln is just given by

n5
“ f

u“ f u
. ~A2!

Then

“`n5“

1

u“ f u
`“ f ~A3!

and therefore

~“`n!•n50. ~A4!

This last equation indicates that the normal to a surface c
not twist. This is also true for an helicoidal surface even

i-
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TABLE V. Arbitrary parameters describing the smectic double twist tube configuration used in
computation of the Fourier transform.

Grain n R1 R2 a a/n u(R1) u(R2) d(R1) d(R2)

Central grain 0 11 nm 0° 0° 4 nm 4 nm
Grain I 3 11.5 nm 22 nm 12.169 nm 4.056 nm 9.56° 5.03° 4 nm 4.04
Grain II 9 22 nm 32 nm 37.694 nm 4.16 nm 15.25° 10.62° 4.04 nm 4.116
Grain III 18 32 nm 41 nm 79.71 nm 4.43 nm 21.63° 17.19° 4.116 nm 4.23
Grain IV 27 41 nm 49 nm 127.43 nm 4.72 nm 26.32° 22.48° 4.23 nm 4.36
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this surface is chiral, that is non-identical to its mirror imag
In that case, this can be seen directly on the expression
the normal components in cylindrical coordinates (r ,f,z):

nr50, ~A5!

nf52sinu, ~A6!

nz5cosu. ~A7!

Then“`n has two nonvanishing components:

~“`n!f5sinu
]u

]u
, ~A8!

~“`n!z5
sinu

r
2cosu

]u

]r
. ~A9!

Therefore,

n•~“`n!52
]u

]r
1

sinu cosu

r
. ~A10!

Using tanu(r )5a/2pr , one can easily show thatn•(“
`n)50. Therefore, even ifu varies as a function ofr, the
normal to the helicoid does not twist.

APPENDIX B: CONSTRUCTION OF A DOUBLE TWIST
TUBE CONFIGURATION

Let us first recall the relationship between the vario
parameters in an annular grain composed ofn helicoidal
sheets.a is the period of each helicoid and its equation is
cylindrical coordinatesr ,f,z is

f52p
z

a
5qaz. ~B1!

The normal to the helicoid which in our case is parallel to
director ~SmA case! is

nr50, ~B2!

nf52sinu, ~B3!

nz5cosu. ~B4!

At the distancer from the main axis,u is given by

tanu5
a

2pr
~B5!
.
of

s

e

and the distanced between the layers, which is the smec
period, is

d~r !5
2pr sinu

n
. ~B6!

At the boundary between two annular grains, relationsh
between the various parameters can be deduced from
variation of the tilt angleu and the smectic periodd. In the
model proposed by Kamien, the smectic period is continu
through the boundary. The tilt angle is discontinuous sinc
is a twist boundary. The twist angle will be calledDu. In the
following equations, indexes 1 and 2 will be related to t
two sides of the boundary located at the distanceR from the
main axis. At the boundary, all the following equations mu
be verified:

u25u11Du, ~B7!

tanu15
a1

2pR
, ~B8!

tanu25
a2

2pR
, ~B9!

sinu1

n1
5

sinu2

n2
. ~B10!

We have built a smectic double twist tube following the
rules. We have imposed a twist angleDu close to 10° and
we have chosen the radii such as the intensity scattere
each grain is nearly the same for all the grains. The cha
teristics of the smectic double twist tube we have used
compute the scattered intensity profile are listed in Table

APPENDIX C: FOURIER TRANSFORM OF AN ANNULAR
GRAIN COMPOSED OF N HELICOIDAL SHEETS

Let us consider an annular grain composed ofn half heli-
coids of perioda with regular spacing. The equation of a ha
helicoid in cylindrical coordinatesr ,f,z is

f52p
z

a
5qaz, ~C1!

wherea is the period of each helicoid along the tube ax
The grain extends over a radius range:R1,r ,R2. Let us
call L the length of the tube which corresponds to the ran
of the smectic order. Along the grain axis, this architecture
periodic with a periodao equal toa/n and close to the smec



he
al

ea

e

t
he
un

tu
re

e
h

-

-

e

PRE 62 665HEXAGONAL SYMMETRY FOR SMECTIC BLUE PHASES
tic period. The pattern which reproduces upon the periodao
is just one turn of one helicoid. Due to this periodicity, t
intensity along this axis will be located around discrete v
ues of qz , that is qz5pqo where qo52p/ao and p is an
integer. In our experiments, we only see the first order p
p51 close to 2p/d whered is the smectic period. The width
of this peak along thez axis is linked to the extension of th
smectic order in this direction and varies as 2p/L. In a pre-
vious experimental paper, it has been estimated to abou
nm @13#. Due to the symmetry around the grain axis, t
scattered intensity must be invariant under rotation aro
this main axis. Its variation uponq1, the distance to the grain
axis in the reciprocal space, then depends on the struc
factor of one turn of helicoid. Therefore the whole structu
factor A(q) of the annular grain withn half helicoids for a
scattering vectorq5(q1,0,qz) in the x,z plane, is given by

A~q!5 (
k51

m

expiqzkaoE
0

a

dzE
R1

R2
drA11qa

2r 2

3expiq1r cos(qaz)expiqzz, ~C2!

wherem is the total number of turns of helicoids over th
distanceL and dzdrA11qa

2r 2 the elementary area of eac
F

k,

rt,

N

-

k

70

d

re

helicoid. Forqz5qo ~first order,p51), the scattered ampli
tude along the radial direction is then given by

A~q1 ,qo!5nmE
R1

R2
drA11qa

2r 2E
0

a

dzexpiq1r cos(qaz)expiqoz.

~C3!

The last integral involves Bessel function of ordern

E
0

a

dzexpiq1r cos(qaz)expiqoz5qo
21Jn~q1r !. ~C4!

The Bessel functionJn(x) presents some maximum for in
creasing values ofx with increasingn. Therefore the inten-
sity scattered by one annular grain will be maximum for

qz5qo6;2p/L ~C5!

and

q1;
max~Jn!

R
. ~C6!

where max(Jn) is the position of the first maximum of th
Bessel function of ordern and R is the mean value of the
annular grain radius.
.
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